Carbon-coated Fe-Mn-O composites as promising anode materials for lithium-ion batteries

ACS Appl Mater Interfaces. 2013 Oct 9;5(19):9470-7. doi: 10.1021/am402205z. Epub 2013 Sep 19.

Abstract

Fe-Mn-O composite oxides with various Fe/Mn molar ratios were prepared by a simple coprecipitation method followed by calcining at 600 °C, and carbon-coated oxides were obtained by pyrolyzing pyrrole at 550 °C. The cycling and rate performance of the oxides as anode materials are greatly associated with the Fe/Mn molar ratio. The carbon-coated oxides with a molar ratio of 2:1 exhibit a stable reversible capacity of 651.8 mA h g(-1) at a current density of 100 mA g(-1) after 90 cycles, and the capacities of 567.7, 501.3, 390.7, and 203.8 mA h g(-1) at varied densities of 200, 400, 800, and 1600 mA g(-1), respectively. The electrochemical performance is superior to that of single Fe3O4 or MnO prepared under the same conditions. The enhanced performance could be ascribed to the smaller particle size of Fe-Mn-O than the individuals, the mutual segregation of heterogeneous oxides of Fe3O4 and MnO during delithiation, and heterogeneous elements of Fe and Mn during lithiation.

Publication types

  • Research Support, Non-U.S. Gov't