2-Alkyl-5-thienyl-substituted benzo[1,2-b:4,5-b']dithiophene-based donor molecules for solution-processed organic solar cells

ACS Appl Mater Interfaces. 2013 Oct 9;5(19):9494-500. doi: 10.1021/am4021928. Epub 2013 Sep 18.

Abstract

In this study, we have strategically designed and convergently synthesized two novel, symmetrical, and linear A-D-A-type π-conjugated donor molecules (TBDTCNR, TBDTCN), each containing a planar electron-rich 2-octylthiene-5-yl-substituted benzodithiophene (TBDT) unit as the core, flanked by octylthiophene units and end-capped with electron-deficient cyanoacetate (CNR) or dicyanovinyl (CN) units. We thoroughly characterized both of these materials and investigated the effects of the end groups (CNR, CN) on their optical, electrochemical, morphological, and photovoltaic properties. We then fabricated solution-processed bulk heterojunction organic solar cells incorporating TBDTCNR and TBDTCN. Among our tested devices, the one containing TBDTCNR and [6,6]-phenyl-C61-butyric acid methyl ester in a 1:0.40 ratio (w/w) exhibited the highest power conversion efficiency (5.42%) with a short-circuit current density (Jsc) of 9.08 mA cm(-2), an open circuit voltage (Voc) of 0.90 V, and an impressive fill factor (FF) of 0.66 under AM 1.5G irradiation (100 mW cm(-2)). The FFs of these solution-processed small-molecule organic solar cells (SMOSCs) are outstanding when compared with those recently reported for benzodithiophene (BDT)-based SMOSCs, because of the high crystallinity and excellent stacking properties of the TBDT-based compounds.

Publication types

  • Research Support, Non-U.S. Gov't