Macrophytes in shallow lakes: relationships with water, sediment and watershed characteristics

Aquat Bot. 2013 Aug 1:109:39-48. doi: 10.1016/j.aquabot.2013.04.001.

Abstract

We examined macrophyte-environment relationships in shallow lakes located within the Prairie Parkland and Laurentian Mixed Forest provinces of Minnesota. Environmental variables included land cover within lake watersheds, and within-lake, water and sediment characteristics. CCA indicated that sediment fraction smaller than 63 μm (f<63), open water area, turbidity, and percent woodland and agricultural cover in watersheds were significant environmental variables explaining 36.6% of variation in macrophyte cover. When Province was added to the analysis as a spatial covariate, these environmental variables explained 30.8% of the variation in macrophyte cover. CCA also indicated that pH, f<63, percent woodland cover in watersheds, open water area, emergent vegetation area, and organic matter content were significant environmental variables explaining 43.5% of the variation in macrophyte biomass. When Province was added to the analysis as a spatial covariate, these environmental variables explained 39.1% of the variation in macrophyte biomass. The f<63 was the most important environmental variable explaining variation for both measures of macrophyte abundance (cover and biomass) when Province was added as a spatial covariate to the models. Percent woodland in watersheds, turbidity, open water area, and Ca+Mg explained 34.5% of the variation in macrophyte community composition. Most species showed a negative relationship with turbidity and open water area except for Potamogeton richardsonii, Stuckenia pectinata, and filamentous algae. Our study further demonstrates the extent to which macrophyte abundance and community composition are related to site- and watershed-scale variables including lake morphology, water and sediment characteristics, and percent land cover of adjacent uplands.

Keywords: aquatic macrophyte; canonical correspondence analysis; land cover; multivariate; ordination; sediment; shallow lake.