A dinuclear cobalt complex featuring unprecedented anodic and cathodic redox switches for single-molecule magnet activity

J Am Chem Soc. 2013 Oct 2;135(39):14670-8. doi: 10.1021/ja405284t. Epub 2013 Sep 20.

Abstract

One-electron oxidation or reduction of the paramagnetic dinuclear Co(II) complex dmp2Nin{Co[N(SiMe3)2]}2 (1; dmp2Nin(2-) = bis(2,6-dimethylphenyl)nindigo), by fully reversible chemical or electrochemical methods, generates the radical salts [1(OEt2)](+) and [1](-), respectively. Full structural and magnetic analyses reveal the locus of the redox changes to be nindigo-based, thus giving rise to ligand-centered radicals sandwiched between two paramagnetic and low-coordinate Co(II) centers. The presence of these sandwiched radicals mediates magnetic coupling between the high-spin (S = 3/2) cobalt ions, which gives rise to single-molecule magnet (SMM) activity in both the oxidized ([1(OEt2)](+)) and reduced ([1](-)) states. This feature represents the first example of a SMM exhibiting fully reversible, dual "ON/OFF" switchability in both the cathodic and anodic states.