A "wrap-and-wrest" mechanism of fluorescence quenching of CdSe/ZnS quantum dots by surfactant molecules

Nanoscale. 2013 Oct 21;5(20):9908-16. doi: 10.1039/c3nr03293k.

Abstract

We identified a mechanism of fluorescence quenching of CdSe/ZnS quantum dots (QDs) coated with two organic layers, octadecylamine and an amphiphilic polymer containing COOH groups, by nonionic polyoxyethylene-based (C12En) surfactants. The surfactant molecules by themselves do not affect the fluorescence of the QDs. For the quenching to occur, "wrapping" of the QDs by a bilayer of the surfactant molecules is necessary. The formation of the bilayer causes an irreversible detachment ("wresting") of the ligand molecules, accompanied by the creation of quenching sites on the QD surface. Due to its two-stage nature, we refer to the quenching mechanism as the "wrap-and-wrest" mechanism. The adsorption of the surfactant on the QD surface is a relatively slow process, occurring within minutes or hours. Such long quenching times allowed monitoring surfactant adsorption progress in real time. The fluorescence signal decays exponentially, and the decay time is inversely proportional to the surfactant concentration in solution.

Publication types

  • Research Support, Non-U.S. Gov't