Recurrent connections form a phase-locking neuronal tuner for frequency-dependent selective communication

Sci Rep. 2013:3:2519. doi: 10.1038/srep02519.

Abstract

The brain requires task-dependent interregional coherence of information flow in the anatomically connected neural network. However, it is still unclear how a neuronal group can flexibly select its communication target. In this study, we revealed a hidden routing mechanism on the basis of recurrent connections. Our simulation results based on the spike response model show that recurrent connections between excitatory and inhibitory neurons modulate the resonant frequency of a local neuronal group, and that this modulation enables a neuronal group to receive selective information by filtering a preferred frequency component. We also found that the recurrent connection facilitates the successful routing of any necessary information flow between neuronal groups through frequency-dependent resonance of synchronized oscillations. Taken together, these results suggest that recurrent connections act as a phase-locking neuronal tuner which determines the resonant frequency of a local group and thereby controls the preferential routing of incoming signals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology*
  • Animals
  • Brain / physiology*
  • Computer Simulation
  • Feedback, Physiological / physiology
  • Humans
  • Models, Neurological*
  • Nerve Net / physiology*
  • Neurons / physiology*
  • Synapses / physiology*
  • Synaptic Transmission / physiology*