Helium atom scattering investigation of the Sb(111) surface

J Phys Condens Matter. 2013 Oct 2;25(39):395002. doi: 10.1088/0953-8984/25/39/395002. Epub 2013 Aug 23.

Abstract

The Sb(111) surface was studied with helium atom scattering (HAS). Elastic HAS at different energies of the incident helium beam (15.3, 21.9, 28.4 meV) was applied for structural investigations. The lattice constants derived from the positions of the observed diffraction peaks up to third order were found to be in perfect agreement with previous structure determinations of Sb(111). The observed diffraction patterns with clear peaks up to second order were used to model the electronic surface corrugation with the GR method. As an estimation for the attractive part of the interaction potential a well depth of (4.0 ± 0.5) meV was found. Best fit results were obtained with a corrugation height of 12-13% of the lattice constant, which is rather large compared to other surfaces with metallic character. Intensity measurements of the specular peak as a function of incident energy were analysed to determine the distribution of terraces on the surface. The results show a quite flat Sb(111) surface and a step height of 3.81 Å of the remaining terraces.

Publication types

  • Research Support, Non-U.S. Gov't