Simple and efficient technique for the preparation of testicular cell suspensions

J Vis Exp. 2013 Aug 4:(78):50102. doi: 10.3791/50102.

Abstract

Mammalian testes are very complex organs that contain over 30 different cell types, including somatic testicular cells and different stages of germline cells. This heterogeneity is an important drawback concerning the study of the bases of mammalian spermatogenesis, as pure or enriched cell populations in certain stages of sperm development are needed for most molecular analyses. Various strategies such as Staput, centrifugal elutriation, and flow cytometry (FC) have been employed to obtain enriched or purified testicular cell populations in order to enable differential gene expression studies. It is required that cells are in suspension for most enrichment/ purification approaches. Ideally, the cell suspension will be representative of the original tissue, have a high proportion of viable cells and few multinucleates--which tend to form because of the syncytial nature of the seminiferous epithelium--and lack cell clumps . Previous reports had evidenced that testicular cell suspensions prepared by an exclusively mechanical method clumped more easily than trypsinized ones. On the other hand, enzymatic treatments with RNAses and/or disaggregating enzymes like trypsin and collagenase lead to specific macromolecules degradation, which is undesirable for certain downstream applications. The ideal process should be as short as possible and involve minimal manipulation, so as to achieve a good preservation of macromolecules of interest such as mRNAs. Current protocols for the preparation of cell suspensions from solid tissues are usually time-consuming, highly operator-dependent, and may selectively damage certain cell types . The protocol presented here combines the advantages of a highly reproducible and extremely brief mechanical disaggregation with the absence of enzymatic treatment, leading to good quality cell suspensions that can be used for flow cytometric analysis and sorting, and ulterior gene expression studies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Animals
  • Cell Culture Techniques / methods*
  • Flow Cytometry
  • Male
  • Rats
  • Testis / cytology*