Core cross-linked micelle-based nanoreactors for efficient photocatalysis

Chem Asian J. 2013 Nov;8(11):2807-12. doi: 10.1002/asia.201300668. Epub 2013 Aug 12.

Abstract

Stable nanoscale cross-linked polymer micelles containing Ru complexes (Ru-CMs) were prepared from monomethoxy[poly(ethylene glycol)]-block-poly(L-lysine) (MPEG-PLys) and [(bpy)2Ru(fmbpy)](PF6)2 (bpy=bipyridine, fmbpy=5-formy-5'-methyl-2,2'-bipyridine). To stabilize the micelles, bifunctional glutaraldehyde was used as a cross-linker to react with the free amino groups of the PLys block. After that, the Ru-CMs showed very good stability in common solvents. The Ru-CMs showed photocatalytic activity and selectivity in the oxidation of sulfides that were as high as those of the well-known [Ru(bpy)3(PF6)2] complex, because the micelles were swollen in the methanol-sulfide mixture. Moreover, because of the nanoscale size of the particles and their high stability, the Ru-CM photocatalysts can be readily recovered by ultrafiltration and reused without loss of photocatalytic activity. This work highlights the potential of using cross-linked micelles as a platform for developing highly efficient heterogeneous photocatalysts for a number of important organic transformations.

Keywords: micelles; nanoreactors; oxidation; photocatalysts; ruthenium.