Targeted therapy for NSCLC with driver mutations

Expert Opin Biol Ther. 2013 Oct;13(10):1401-12. doi: 10.1517/14712598.2013.827657. Epub 2013 Aug 10.

Abstract

Introduction: Activating mutations of the epidermal growth factor receptor (EGFR) gene and rearrangement of anaplastic lymphoma kinase (ALK) gene best illustrate the therapeutic relevance of molecular characterization in non-small cell lung cancer (NSCLC) patients. Several genetic aberrations with a potential prognostic or predictive role have been identified, mainly in adenocarcinoma subtype, including ROS1, RET, MET, HER2, BRAF and KRAS. More recently oncogenic drivers, such as DDR2, FGFR1 and PI3KCA, have been characterized in squamous cell lung carcinoma (SCC) and target agents are currently under evaluation. The aim of this review is to summarize the growing scenario of new targetable oncogenes in NSCLC.

Areas covered: For this review article all published data on NSCLC genomic alterations, including the techniques employed for oncogenic drivers identification, the prevalence of each one in lung cancer subtypes, the preclinical data corroborating their role in tumorigenesis and the potential biological tailored agents tested and under evaluation were collected and analyzed using PubMed.

Expert opinion: Oncogenic products represent reliable targets for drug therapy and the expanding knowledge of molecular pathways involved in lung tumorigenesis is resulting in a dramatic change of treatment strategies leading to an improvement in disease and symptom control, extending life duration and improving quality of life.

Publication types

  • Review

MeSH terms

  • Antineoplastic Agents / therapeutic use*
  • Carcinoma, Non-Small-Cell Lung / drug therapy*
  • Carcinoma, Non-Small-Cell Lung / genetics
  • Humans
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / genetics
  • Molecular Targeted Therapy*
  • Oncogenes / drug effects*
  • Oncogenes / genetics

Substances

  • Antineoplastic Agents