Fabrication of thermally stable and active bimetallic Au-Ag nanoparticles stabilized on inner wall of mesoporous silica shell

Dalton Trans. 2013 Oct 14;42(38):13940-7. doi: 10.1039/c3dt51546j. Epub 2013 Aug 8.

Abstract

A general method has been developed for the fabrication of highly dispersed and thermally stable bimetallic Au-Ag nanoparticles (NPs) stabilized on the inner wall of a mesoporous silica shell. In our approach, gold particles were formed in the first step on carbon spheres decorated with Sn(2+) cations. Upon Ag(+) adsorption and reduction by l-ascorbic acid in the second step, specific nanoparticles with a gold-silver alloy core and a silver nanoshell have been formed. Important evidence of the core-shell configurations of the bimetallic Au-Ag nanoparticles were clearly characterized by UV-vis, TEM and HAADF-STEM observations combined with elemental mapping and line scans. The mesoporous silica outer shell was obtained through the hydrolysis and condensation of the precursors tetraethoxysilane (TEOS) in a basic condition and cetyltrimethylammonium bromide (CTAB) as a structure-directing agent. On this basis, the nanoreactors were fabricated after calcination, which further serves as a nanoreactor for the reduction of p-nitrophenol. Furthermore, such particles have been found to be thermally stable and their sizes remain substantially unchanged even upon calcination in air at 500 °C and a reduction treatment in H2. Potentially, the method can be developed into a general approach to synthesize other highly dispersed and thermally stable bimetallic nanoparticles stabilized on the inner wall of a mesoporous silica shell.