Rapid in vitro corrosion induced by crack-like pathway in biodegradable Mg-10% Ca alloy

Microsc Microanal. 2013 Aug:19 Suppl 5:210-4. doi: 10.1017/S1431927613012683.

Abstract

The in vitro corrosion mechanism of the biodegradable cast Mg-10% Ca binary alloy in Hanks' solution was evaluated through transmission electron microscopy observations. The corrosion behavior depends strongly on the microstructural peculiarity of Mg₂Ca phase surrounding the island-like primary Mg phase and the fast corrosion induced by the interdiffusion of O and Ca via the Mg₂Ca phase of lamellar structure. At the corrosion front, we found that a nanosized crack-like pathway was formed along the interface between the Mg₂Ca phase and the primary Mg phase. Through the crack-like pathway, O and Ca are atomically exchanged each other and then the corroded Mg₂Ca phase was transformed to Mg oxides. The in vitro corrosion by the exchange of Ca and O at the nanosized pathway led to the rapid bulk corrosion in the Mg-Ca alloys.

Publication types

  • Research Support, Non-U.S. Gov't