Higher body fatness in intrauterine growth retarded juvenile pigs is associated with lower fat and higher carbohydrate oxidation during ad libitum and restricted feeding

Eur J Nutr. 2014;53(2):583-97. doi: 10.1007/s00394-013-0567-x. Epub 2013 Aug 2.

Abstract

Purpose: A thrifty energy metabolism has been suggested in intrauterine growth restricted (IUGR) offspring. We characterized energy metabolism and substrate oxidation patterns in IUGR pigs in response to food restriction (FR) and refeeding (RFD).

Methods: Female pigs with low (L; 1.1 kg; n = 20) or normal birth weight (N; 1.5 kg; n = 24) were fed ad libitum after weaning. Half of L and N pigs were food restricted (R; LR, NR) from days 80 to 100 (57% of ad libitum) and refeed from days 101 to 131, while the remaining pigs were fed ad libitum (control, C). Using indirect calorimetry, carbohydrate and fat oxidation (COX, FOX), energy expenditure (EE) and balance (EB), resting metabolic rate (RMR) [all related to kg body weight(0.62) (BW)] and RQ were determined at 4 days before (day 76) and after (day 83) beginning of FR, 4 days before (day 97) and after (day 104) end of FR and 25 days after beginning of RFD (day 125). Body fat and muscle weights were determined at day 131.

Results: In spite of higher relative food intake (FI), BW was lower in L pigs. In L pigs, physical activity was lower at age 76 and 83 days compared to N pigs. IUGR did not affect EE or RMR, but resulted in higher COX and lower FOX, causing greater and earlier onset of fat deposition. During FR, EE and RMR of R pigs dropped below that of C pigs, and BW gain was delayed by 30% irrespective of birth weight. In response to FR, COX decreased and FOX increased. During FR, in LR pigs FOX was ~50% of that in NR pigs. After 4 days, but not 25 days of RFD, EB and fat synthesis were higher in pigs previously subjected to FR, indicating early catch-up fat. In R pigs, BW and the abdominal fat proportion were lower at 131 days.

Conclusions: Differences in food intake and substrate oxidation pattern, but not in EE and RMR, between L and N pigs were reflected in higher body fat proportions but lower body and muscle weights in L pigs. Refeeding following FR was initially associated with increased FI, a more positive EB and a more intense stimulation of fat synthesis which did not persist after 25 days of refeeding.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Birth Weight
  • Body Composition*
  • Body Weight
  • Calorimetry, Indirect
  • Carbohydrate Metabolism*
  • Diet*
  • Disease Models, Animal
  • Energy Metabolism*
  • Fatty Acids, Nonesterified / blood
  • Female
  • Fetal Growth Retardation / physiopathology*
  • Lipid Metabolism*
  • Oxidation-Reduction
  • Sus scrofa

Substances

  • Fatty Acids, Nonesterified