Molecular structure and chemical property of a divalent metallofullerene Yb@C2(13)-C84

J Am Chem Soc. 2013 Aug 28;135(34):12730-5. doi: 10.1021/ja405223t. Epub 2013 Aug 15.

Abstract

Endohedral metallofullerenes (EMFs) encapsulating divalent metal ions have received limited attention because of their low production yields. Here, we report the results of structural determination and chemical functionalization of a typical divalent metallofullerene, Yb@C84(II). Single-crystal X-ray crystallographic studies of Yb@C84/Ni(II)(OEP) cocrystals (OEP is the dianion of octaethylporphyrin) unambiguously established the chiral C2(13)-C84 cage structure and revealed multiple sites for Yb(2+), indicating a moving metal ion inside the cage. The chemical property of Yb@C2(13)-C84 was probed with the electrophillic adamantylidene carbene (1). Three monoadduct isomers were isolated and characterized. Crystallographic results of the major isomer (2b) revealed that, although the cycloaddition breaks a [5,6]-bond on the cage, Yb(2+) is localized under a hexagonal ring distant from the sites of addition. Thus, it is proved that the dynamic motion of the divalent metal ion in Yb@C84 has been effectively halted by exohedral functionalization. Spectroscopic results show that the electronic property of Yb@C2(13)-C84 is pertained in the derivatives, although the addend exerts a mild reduction effect on the electrochemical behavior of the EMF. Computational works demonstrated that addition of 1 to Yb@C2(13)-C84 is mainly driven by releasing the local strains of cage carbons rather than charge recombination, which is always prominent to the affinity of typical trivalent EMFs such as M@C2v(9)-C82 (M = Sc, Y, La, Ce, Gd) toward 1. Accordingly, it is speculated that the chemical behaviors of divalent EMFs more likely resemble those of empty fullerenes because both are closed-shell compounds, but they differ from those of trivalent EMFs, which have open-shell electronic configurations instead.