Carbene transfer from triazolylidene gold complexes as a potent strategy for inducing high catalytic activity

J Am Chem Soc. 2013 Sep 4;135(35):13193-203. doi: 10.1021/ja406999p. Epub 2013 Aug 21.

Abstract

A series of gold(I) complexes [AuCl(trz)] were synthesized that contain 1,2,3-triazolylidene (trz) ligands with variable wingtip groups. In the presence of AgBF4, these complexes undergo ligand redistribution to yield cationic complexes [Au(trz)2]BF4 in high yields as a result of efficient carbene transfer. Identical reactivity patterns were detected for carbene gold complexes comprised of Arduengo-type IMes ligands (IMes = N,N'-dimesityl-imidazol-2-ylidene). Reaction of cationic complexes [Au(trz)2](+) with [AuCl(trz')] afforded the heteroleptic complex [Au(trz)(trz')](+) and [AuCl(trz)] (trz, trz' = triazolylidene ligands with different wingtip groups). Carbene transfer occurs spontaneously, yet is markeldy rate-enhanced in the presence of Ag(+). The facile carbene transfer was exploited as a catalyst activation process to form active gold species for the aldol condensation of isocyanides and aldehydes to form oxazolines. The catalytic activity is strongly dependent on the presence of Ag(+) ions to initiate catalyst activation. High turnovers (10(5)) and turnover frequencies (10(4) h(-1)) were accomplished. Structural analysis at early stages of the reaction support the critical role of triazolylidene dissociation to activate the precatalyst and dynamic light scattering revealed the presence of nanoparticles (±100 nm diameter) as potential catalytically active species. Furthermore, the triazolylidene scaffold had no impact on the diastereoselectivity of the oxazoline formation, and chiral triazolylidenes did not induce any asymmetry in the product. The facile dissociation of carbenes from [AuCl(carbene)] in the presence of Ag(+) ions suggests a less stable Au-Ccarbene interaction than often assumed, with potential implications for gold-catalyzed reactions that employ a silver salt as (putative) halide scavenger.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Crystallography, X-Ray
  • Methane / analogs & derivatives*
  • Methane / chemistry
  • Models, Molecular
  • Molecular Structure
  • Organogold Compounds / chemical synthesis
  • Organogold Compounds / chemistry*
  • Triazoles / chemistry*

Substances

  • Organogold Compounds
  • Triazoles
  • carbene
  • Methane