Radiosensitization of mammalian cells in vitro by nitroacridines

Radiat Res. 1990 Aug;123(2):153-64.

Abstract

The nitroacridine nitracrine (1-NC) is a DNA intercalator and a hypoxia-selective, electron-affinic radiosensitizer. Sensitization of Chinese hamster fibroblast cultures at 0 degrees C by the nitro positional isomers of 1-NC has now been compared to help establish structure-activity relationships. The des-nitro analog (E(1) at pH 7 = -899 mV) did not sensitize, suggesting that an electron-affinic chromophore is required. All the nitroacridines (E(1) range -376 to -257 mV) sensitized hypoxic cells with a maximum sensitizer enhancement ratio of about 1.7, but with a 200-fold range in potency. When mean intracellular drug concentrations were compared, 2-, 3-, and 4-NC had potencies which were similar, independent of E(1), and no greater than predicted for non-DNA binding nitroheterocycles. Sensitization by these three isomers occurred at intracellular concentrations likely to saturate the potential intercalation sites on DNA. A large fraction of the radical sites sensitized by O2 are apparently inaccessible to these drugs. It is suggested that sensitization results from electron transfer from migrating transient charge carriers of low reduction potential to immobile bound intercalators. An additional sensitizing mechanism may be available to 1-NC, which was 20 times more potent, a potency not accounted for by E(1), cell uptake, or DNA binding affinity. The dissociation kinetics of the DNA-drug complex was faster for 1-NC than for the other isomers. The higher potency of 1-NC may reflect a short mean residence time (less than 1 ms) in its intercalation site, allowing significant mobility on the DNA within the lifetime of relatively stable radiation-induced target radicals.

MeSH terms

  • Acridines / pharmacology*
  • Animals
  • Cell Hypoxia / drug effects
  • Cell Hypoxia / radiation effects
  • Cell Survival / drug effects
  • Cell Survival / radiation effects
  • Cricetinae
  • In Vitro Techniques
  • Nitro Compounds / pharmacology*
  • Radiation-Sensitizing Agents / pharmacology*

Substances

  • Acridines
  • Nitro Compounds
  • Radiation-Sensitizing Agents