One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite

Nat Commun. 2013:4:2202. doi: 10.1038/ncomms3202.

Abstract

Increased portability, versatility and ubiquity of electronics devices are a result of their progressive miniaturization, requiring current flow through narrow channels. Present-day devices operate close to the maximum current-carrying-capacity (that is, ampacity) of conductors (such as copper and gold), leading to decreased lifetime and performance, creating demand for new conductors with higher ampacity. Ampacity represents the maximum current-carrying capacity of the object that depends both on the structure and material. Here we report a carbon nanotube-copper composite exhibiting similar conductivity (2.3-4.7 × 10(5) S cm(-1)) as copper (5.8 × 10(5) S cm(-1)), but with a 100-times higher ampacity (6 × 10(8) A cm(-2)). Vacuum experiments demonstrate that carbon nanotubes suppress the primary failure pathways in copper as observed by the increased copper diffusion activation energy (~2.0 eV) in carbon nanotube-copper composite, explaining its higher ampacity. This is the only material with both high conductivity and high ampacity, making it uniquely suited for applications in microscale electronics and inverters.

Publication types

  • Research Support, Non-U.S. Gov't