Electronic state of oxidized nanographene edge with atomically sharp zigzag boundaries

ACS Nano. 2013 Aug 27;7(8):6868-74. doi: 10.1021/nn402047a. Epub 2013 Jul 24.

Abstract

Combined scanning tunneling microscopy (STM) and density functional theory (DFT) characterizations of the electronic state were performed on the zigzag edge of oxidized nanographene samples. The oxidized zigzag edge with atomically sharp boundaries was prepared by electrochemical oxidation of the graphite surface in aqueous sulfuric acid solution. Bias-dependent STM measurements demonstrated the presence of the edge state at the zigzag edges with local density of states (LDOS) split into two peaks around the Fermi level. Our DFT-based analysis showed that the two-peak structure of the edge state was due to the termination of the zigzag edge by carbonyl functional groups. The LDOS arising from the edge states was slowly dampened in the bulk at the carbonyl-terminated zigzag edges (~1.5 nm). This result is in clear contrast to the strongly localized edge states at hydrogenated zigzag edges in previous reports. The oxygen atoms in the carbonyl functional groups act as additional π sites at the edges; thus, the topology of the π electron network changes from "zigzag" to "Klein" type, leading to drastic modification of the edge states at the oxidized edges.

Publication types

  • Research Support, Non-U.S. Gov't