Photocatalytic hydrogen generation system using a nickel-thiolate hexameric cluster

Inorg Chem. 2013 Aug 5;52(15):9094-101. doi: 10.1021/ic4013069. Epub 2013 Jul 18.

Abstract

We report the use of a nickel-thiolate hexameric cluster, Ni6(SC2H4Ph)12, for photocatalytic hydrogen production from water. The nickel cluster was synthesized ex-situ and characterized by various techniques. Single crystal X-ray analysis, (1)H NMR, 2D COSY, ESI-MS, UV-visible spectroscopy, and TGA provided insight into the structure and confirmed the purity and stability of the cluster. Cyclic voltammetry helped confirm hydrogen evolution reaction (HER) activity of this catalyst. Photoreactions carried out using an iridium photosensitizer, Ir(F-mppy)2(dtbbpy)[PF6], and TEA as the sacrificial reductant revealed the high activity of the Ni6 cluster as a water reducing catalyst. High TONs (3750) and TOFs (970 h(-1)) were obtained at optimum catalyst concentration (0.025 mM), with low concentrations of catalyst yielding up to 30,000 turnovers. Quenching studies, along with the evidence obtained from the electrochemical analysis, showed that this water reduction system proceeds through a reductive quenching mechanism. Mercury poisoning studies confirmed that no active, metallic colloids were formed during the photocatalytic reaction.