A mixed-signal multichip neural recording interface with bandwidth reduction

IEEE Trans Biomed Circuits Syst. 2009 Jun;3(3):129-41. doi: 10.1109/TBCAS.2009.2013718.

Abstract

We present a multichip structure assembled with a medical-grade stainless-steel microelectrode array intended for neural recordings from multiple channels. The design features a mixed-signal integrated circuit (IC) that handles conditioning, digitization, and time-division multiplexing of neural signals, and a digital IC that provides control, bandwidth reduction, and data communications for telemetry toward a remote host. Bandwidth reduction is achieved through action potential detection and complete capture of waveforms by means of onchip data buffering. The adopted architecture uses high parallelism and low-power building blocks for safety and long-term implantability. Both ICs are fabricated in a CMOS 0.18-mum process and are subsequently mounted on the base of the microelectrode array. The chips are stacked according to a vertical integration approach for better compactness. The presented device integrates 16 channels, and is scalable to hundreds of recording channels. Its performance was validated on a testbench with synthetic neural signals. The proposed interface presents a power consumption of 138 muW per channel, a size of 2.30 mm(2), and achieves a bandwidth reduction factor of up to 48 with typical recordings.