Stereoscopic video analysis of Anopheles gambiae behavior in the field: challenges and opportunities

Acta Trop. 2014 Apr;132 Suppl(0):S80-5. doi: 10.1016/j.actatropica.2013.06.021. Epub 2013 Jul 10.

Abstract

Advances in our ability to localize and track individual swarming mosquitoes in the field via stereoscopic image analysis have enabled us to test long-standing ideas about individual male behavior and directly observe coupling. These studies further our fundamental understanding of the reproductive biology of mosquitoes. In addition, our analyses using stereoscopic video of swarms of the African malaria vector Anopheles gambiae have produced results that should be relevant to any "release-based" method of control including Sterile Insect Technique (SIT) and genetically modified male mosquitoes (GMM). The relevance of the results is primarily due to the fact that any mosquito vectors released for control are almost certainly going to be males; further, for SIT, GMM or similar approaches to be successful, the released males will have to successfully locate swarms and then mate with wild females. Thus, understanding and potentially manipulating the mating process could play a key role in future control programs. Our experience points to special challenges created by stereoscopic video of swarms. These include the expected technical difficulties of capturing usable images of mosquitoes in the field, and creating an automated tracking system to enable generation of large numbers of three dimensional tracks over many seconds of footage. Once the data are collected, visualization and application of appropriate statistical and analytic methods also are required. We discuss our recent progress on these problems, give an example of a statistical approach to quantify individual male movement in a swarm with some novel results, and suggest further studies incorporating experimental manipulation and three dimensional localization and tracking of individual mosquitoes in wild swarms.

Keywords: Anopheles gambiae; Computer vision; Mating behavior; Swarming.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Anopheles / physiology*
  • Entomology / methods*
  • Female
  • Imaging, Three-Dimensional / methods*
  • Male
  • Sexual Behavior, Animal*
  • Video Recording / methods*