Negligible water surface charge determined using Kelvin probe and total reflection X-ray fluorescence techniques

Phys Chem Chem Phys. 2013 Sep 7;15(33):13991-8. doi: 10.1039/c3cp51575c. Epub 2013 Jul 11.

Abstract

The water surface charge has been extensively debated in recent decades. Electrophoretic mobilities of air bubbles in water and disjoining pressures between the surfaces of aqueous films suggest that the surface of water exhibits a significant negative charge. This is commonly attributed to a strong adsorption of hydroxide ions at the interface, though spectroscopic measurements and simulation studies suggest surface depletion of hydroxide ions. Alternatively, the negative surface charge could arise from surface contamination with trace charged surfactants. We have probed the variation in the surface charge of water with pH by measuring surface potentials using the Kelvin probe technique. Independently, the abundance in the interfacial layer of "reporter ions" (Rb(+) and Br(-)), which must be affected by a charged surface, has been monitored using the total reflection X-ray fluorescence (TRXF) technique. Special care was taken to prove the high sensitivity of this technique as well as to avoid surface contaminants. The magnitude of the surface charge was found to be below 1 e per 500 nm(2) (TRXF). No evidence of variations in the surface potential between pH 2-3 and pH 9-12 was detected within the accuracies of the methods (5 mV for Kelvin probe and 2 mV for TRXF). Hence, our findings suggest that the clean water surface exhibits negligible charge in a wide pH range.