Plasmonic nano-ring arrays through patterning gold nanoparticles into interferograms

Opt Express. 2013 Jul 1;21(13):15314-22. doi: 10.1364/OE.21.015314.

Abstract

Large-area gold nanoring arrays were fabricated using interference lithography and metallic transformation through annealing of colloidal gold nanoparticles. The strong surface tension of the suspension solution and the molten gold, as well as the effective distance of these interaction mechanisms, is responsible for the creation of gold nanorings. The size and shape of the gold nanorings can be controlled by adjusting the size of the holes in the template photoresist grating, which is accomplished in the stage of interference lithography. Furthermore, the concentration of the colloidal gold nanoparticles and the annealing temperature can be utilized to achieve further optimization of the gold nanoring structures. Optical spectroscopic measurements show unique plasmonic response of the nanoring arrays in the visible and in the infrared spectral ranges, which agrees well with the theoretical simulation. This fabrication method provides a simple and low-cost route for achieving metallic nanoring arrays in a large scale for practical applications.

Publication types

  • Research Support, Non-U.S. Gov't