Evaporation-driven instability of the precorneal tear film

Adv Colloid Interface Sci. 2014 Apr:206:250-64. doi: 10.1016/j.cis.2013.06.001. Epub 2013 Jun 6.

Abstract

Tear-film instability is widely believed to be a signature of eye health. When an interblink is prolonged, randomly distributed ruptures occur in the tear film. "Black spots" and/or "black streaks" appear in 15 to 40 s for normal individuals. For people who suffer from dry eye, tear-film breakup time (BUT) is typically less than a few seconds. To date, however, there is no satisfactory quantitative explanation for the origin of tear rupture. Recently, it was proposed that tear-film breakup is related to locally high evaporative thinning. A spatial variation in the thickness of the tear-film lipid layer (TFLL) may lead to locally elevated evaporation and subsequent tear-film breakup. We examine the local-evaporation-driven tear-film-rupture hypothesis in a one-dimensional (1-D) model for the evolution of a thin aqueous tear film overriding the cornea subject to locally elevated evaporation at its anterior surface and osmotic water influx at its posterior surface. Evaporation rate depends on mass transfer both through the coating lipid layer and through ambient air. We establish that evaporation-driven tear-film breakup can occur under normal conditions but only for higher aqueous evaporation rates. Predicted roles of environmental conditions, such as wind speed and relative humidity, on tear-film stability agree with clinical observations. More importantly, locally elevated evaporation leads to hyperosmolar spots in the tear film and, hence, vulnerability to epithelial irritation. In addition to evaporation rate, tear-film instability depends on the strength of healing flow from the neighboring region outside the breakup region, which is determined by the surface tension at the tear-film surface and by the repulsive thin-film disjoining pressure. This study provides a physically consistent and quantitative explanation for the formation of black streaks and spots in the human tear film during an interblink.

Keywords: Dry eye; Evaporation; Hyperosmolarity; Tear-film lipid layer; Tear-film stability.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biophysical Phenomena
  • Cornea*
  • Humans
  • Tears / chemistry*
  • Volatilization