Chloroquine interference with hemoglobin endocytic trafficking suppresses adaptive heme and iron homeostasis in macrophages: the paradox of an antimalarial agent

Oxid Med Cell Longev. 2013:2013:870472. doi: 10.1155/2013/870472. Epub 2013 Jun 11.

Abstract

The CD163 scavenger receptor pathway for Hb:Hp complexes is an essential mechanism of protection against the toxicity of extracellular hemoglobin (Hb), which can accumulate in the vasculature and within tissues during hemolysis. Chloroquine is a lysosomotropic agent, which has been extensively used as an antimalarial drug in the past, before parasite resistance started to limit its efficacy in most parts of the world. More recent use of chloroquine is related to its immunomodulatory activity in patients with autoimmune diseases, which may also involve hemolytic disease components. In this study we examined the effects of chloroquine on the human Hb clearance pathway. For this purpose we developed a new mass-spectrometry-based method to specifically quantify intracellular Hb peptides within the endosomal-lysosomal compartment by single reaction monitoring (SRM). We found that chloroquine exposure impairs trafficking of Hb:Hp complexes through the endosomal-lysosomal compartment after internalization by CD163. Relative quantification of intracellular Hb peptides by SRM confirmed that chloroquine blocked cellular Hb:Hp catabolism. This effect suppressed the cellular heme-oxygenase-1 (HO-1) response and shifted macrophage iron homeostasis towards inappropriately high expression of the transferrin receptor with concurrent inhibition of ferroportin expression. A functional deficiency of Hb detoxification and heme-iron recycling may therefore be an adverse consequence of chloroquine treatment during hemolysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Antigens, CD / metabolism
  • Antigens, Differentiation, Myelomonocytic / metabolism
  • Antimalarials / pharmacology
  • Chloroquine / pharmacology*
  • Endocytosis / drug effects*
  • HEK293 Cells
  • Haptoglobins / metabolism
  • Heme / metabolism*
  • Heme Oxygenase-1 / metabolism
  • Hemoglobins / chemistry
  • Hemoglobins / metabolism*
  • Homeostasis / drug effects*
  • Humans
  • Intracellular Space / drug effects
  • Intracellular Space / metabolism
  • Iron / metabolism*
  • Macrophages / drug effects
  • Macrophages / metabolism*
  • Molecular Sequence Data
  • Peptides / metabolism
  • Protein Transport / drug effects
  • Receptors, Cell Surface / metabolism

Substances

  • Antigens, CD
  • Antigens, Differentiation, Myelomonocytic
  • Antimalarials
  • CD163 antigen
  • Haptoglobins
  • Hemoglobins
  • Peptides
  • Receptors, Cell Surface
  • Heme
  • Chloroquine
  • Iron
  • Heme Oxygenase-1