N-(pyridin-4-yl)benzo[d]thiazole-6-carboxamide inhibits E. coli UT189 bacterial capsule biogenesis

Review
In: Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010.
[updated ].

Excerpt

Uropathogenic Escherichia coli (UPEC) is the leading cause of community-acquired urinary tract infections (UTIs). Over 100 million UTIs occur annually throughout the world, including more than 7 million cases in U.S. adolescents and adults. UTIs in younger children are associated with greater risk of morbidity and mortality than in older children and adults. During UTI, UPEC exists in both intracellular and extracellular spaces. Infection is initiated by adherence to the apical bladder epithelium and then invading this layer of cells. Within the bladder epithelium, UPEC typically reproduces in a biofilm-like state composed of intracellular bacterial communities (IBC). After maturation of IBCs, UPEC disperses away from the IBC and exits the infected cells. Extracellular UPEC must then re-adhere, initiating the invasion and intracellular propagation phases again. Bacterial-epithelial interactions incite a strong inflammatory response through which the UPEC must persist. One persistence factor is the K type polysaccharide capsule. Capsule protects against phagocytosis, complement action, and antimicrobial peptide (AP) killing. Recent studies have also revealed that capsule along with fibrous protein assemblies is a key part of the IBC formation. Antimicrobial resistance among UPEC is increasing, driving efforts to identify therapeutic targets in the molecular pathogenesis of infection. Capsules are an attractive target because of new insights into the roles of bacterial K capsules in UPEC virulence during UTI. Specific investigations have shown that K capsule contributes to multiple aspects of pathogenesis, including IBC formation. In this program, the team used a cell-based assay to screen 335,740 compounds from the MLSMR library and identified 1,767 hits that inhibited K1 bacterial capsule formation. Of those hits, 59 were confirmed as active in a dose-responsive manner and eight compounds were shown in secondary assays to specifically inhibit capsule formation. Of those eight compounds, three were further characterized for structure-activity relationships, mechanism of action, and selectivity. The probe compound, N-(pyridin-4-yl)benzo[d]thiazole-6-carboxamide, was identified as a small molecule inhibitor of K1 capsule formation with an IC50 value of 1.04 ± 0.13 μM and a >200-fold selectivity index (SI) in BC5637 bladder cells. The probe has been broadly profiled for off-target liabilities and assessed for aqueous solubility, parallel artificial membrane permeability, and hepatocyte microsome and plasma stability. It is suitable for use as a lead compound for inhibition of K1 capsule formation.

Publication types

  • Review