Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery

J Control Release. 2013 Oct 10;171(1):63-72. doi: 10.1016/j.jconrel.2013.06.034. Epub 2013 Jul 3.

Abstract

Appropriate combinations of mechanical and biological stimuli are required to promote proper colonization of substrate materials in regenerative medicine. In this context, 3D scaffolds formed by compatible and biodegradable materials are under continuous development in an attempt to mimic the extracellular environment of mammalian cells. We have here explored how novel 3D porous scaffolds constructed by polylactic acid, polycaprolactone or chitosan can be decorated with bacterial inclusion bodies, submicron protein particles formed by releasable functional proteins. A simple dipping-based decoration method tested here specifically favors the penetration of the functional particles deeper than 300μm from the materials' surface. The functionalized surfaces support the intracellular delivery of biologically active proteins to up to more than 80% of the colonizing cells, a process that is slightly influenced by the chemical nature of the scaffold. The combination of 3D soft scaffolds and protein-based sustained release systems (Bioscaffolds) offers promise in the fabrication of bio-inspired hybrid matrices for multifactorial control of cell proliferation in tissue engineering under complex architectonic setting-ups.

Keywords: 3D scaffolds; Bioscaffold; Bottom-up delivery; Nanoparticles; Polylactic acid (PLA); Tissue engineering.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacterial Proteins / administration & dosage*
  • Bacterial Proteins / chemistry
  • Biocompatible Materials / chemistry
  • Cells, Cultured
  • Chitosan / chemistry
  • Escherichia coli
  • Fibroblasts
  • HeLa Cells
  • Humans
  • Inclusion Bodies / chemistry*
  • Lactic Acid / chemistry
  • Mice
  • NIH 3T3 Cells
  • Polyesters / chemistry
  • Polymers / chemistry
  • Tissue Scaffolds

Substances

  • Bacterial Proteins
  • Biocompatible Materials
  • Polyesters
  • Polymers
  • polycaprolactone
  • Lactic Acid
  • poly(lactide)
  • Chitosan