Direct and indirect effects of elevated atmospheric CO2 on net ecosystem production in a Chesapeake Bay tidal wetland

Glob Chang Biol. 2013 Nov;19(11):3368-78. doi: 10.1111/gcb.12316. Epub 2013 Sep 11.

Abstract

The rapid increase in atmospheric CO2 concentrations (Ca ) has resulted in extensive research efforts to understand its impact on terrestrial ecosystems, especially carbon balance. Despite these efforts, there are relatively few data comparing net ecosystem exchange of CO2 between the atmosphere and the biosphere (NEE), under both ambient and elevated Ca . Here we report data on annual sums of CO2 (NEE(net) ) for 19 years on a Chesapeake Bay tidal wetland for Scirpus olneyi (C3 photosynthetic pathway)- and Spartina patens (C4 photosynthetic pathway)-dominated high marsh communities exposed to ambient and elevated Ca (ambient + 340 ppm). Our objectives were to (i) quantify effects of elevated Ca on seasonally integrated CO2 assimilation (NEE(net) = NEE(day) + NEE(night) , kg C m(-2) y(-1) ) for the two communities; and (ii) quantify effects of altered canopy N content on ecosystem photosynthesis and respiration. Across all years, NEE(net) averaged 1.9 kg m(-2) y(-1) in ambient Ca and 2.5 kg m(-2) y(-1) in elevated Ca , for the C3 -dominated community. Similarly, elevated Ca significantly (P < 0.01) increased carbon uptake in the C4 -dominated community, as NEE(net) averaged 1.5 kg m(-2) y(-1) in ambient Ca and 1.7 kg m(-2) y(-1) in elevated Ca . This resulted in an average CO2 stimulation of 32% and 13% of seasonally integrated NEE(net) for the C3 - and C4 -dominated communities, respectively. Increased NEE(day) was correlated with increased efficiencies of light and nitrogen use for net carbon assimilation under elevated Ca , while decreased NEE(night) was associated with lower canopy nitrogen content. These results suggest that rising Ca may increase carbon assimilation in both C3 - and C4 -dominated wetland communities. The challenge remains to identify the fate of the assimilated carbon.

Keywords: carbon storage; ecosystem respiration; elevated CO2; net ecosystem CO2 exchange; nitrogen; photosynthesis; tidal wetlands.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Atmosphere
  • Bays
  • Carbon Cycle
  • Carbon Dioxide / analysis*
  • Climate Change
  • Cyperaceae / metabolism*
  • Ecosystem*
  • Nitrogen / analysis
  • Plant Shoots / metabolism
  • Poaceae / metabolism*
  • Wetlands

Substances

  • Carbon Dioxide
  • Nitrogen