C-terminus of the Sgf73 subunit of SAGA and SLIK is important for retention in the larger complex and for heterochromatin boundary function

Genes Cells. 2013 Sep;18(9):823-37. doi: 10.1111/gtc.12075. Epub 2013 Jul 2.

Abstract

The budding yeast Saccharomyces cerevisiae contains active and inactive chromatin separated by boundary domains. Previously, we used genome-wide screening to identify 55 boundary-related genes. Here, we focus on Sgf73, a boundary protein that is a component of the Spt-Ada-Gcn5 acetyltransferase (SAGA) and SLIK (SAGA-like) complexes. These complexes have histone acetyltransferase (HAT) and histone deubiquitinase activity, and Sgf73 is one of the factors necessary to anchor the deubiquitination module. Domain analysis of Sgf73 was carried out, and the minimum region (373-402 aa) essential for boundary function was identified. This minimum region does not include the domain involved in anchoring the deubiquitination module, suggesting that the histone deubiquitinase activity of Sgf73 is not important for its boundary function. Next, Sgf73-mediated boundary function was analyzed in disruption strains in which different protein subunits of the SAGA/SLIK/ADA complexes were deleted. Deletion of ada2, ada3 or gcn5 (a HAT module component) caused complete loss of the boundary function of Sgf73. The importance of SAGA or SLIK complex binding to the boundary function of Sgf73 was also analyzed. Western blot analysis detected both the full-length and truncated forms of Spt7, suggesting that SAGA and SLIK complex formation is important for the boundary function of Sgf73.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Deletion
  • Heterochromatin / metabolism*
  • Histone Acetyltransferases / chemistry
  • Histone Acetyltransferases / genetics
  • Histone Acetyltransferases / metabolism*
  • Insulator Elements*
  • Protein Binding
  • Protein Structure, Tertiary
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • ADA2 protein, S cerevisiae
  • Heterochromatin
  • NGG1 protein, S cerevisiae
  • SPT7 protein, S cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Transcription Factors
  • GCN5 protein, S cerevisiae
  • Histone Acetyltransferases
  • Sgf73 protein, S cerevisiae