Characterization of oat proteins and aggregates using asymmetric flow field-flow fractionation

Anal Bioanal Chem. 2013 Aug;405(21):6649-55. doi: 10.1007/s00216-013-7115-7. Epub 2013 Jun 30.

Abstract

The soluble proteins and protein aggregates in Belinda oats were characterized using asymmetric flow field-flow fractionation (AF4) coupled with online UV-vis spectroscopy and multiangle light-scattering detection (MALS). Fractions from the AF4 separation were collected and further characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The AF4 fractogram of the oat extracts revealed three peaks which were determined to be monomeric forms of soluble proteins, globulin aggregates, and β-glucan, respectively. The early eluting monomeric proteins ranged in molar mass (MM) between 5 and 90 kg/mol and in hydrodynamic diameter (D h) from 1.6 to 13 nm. The MM at peak maximum of the globulin aggregate peak was found to be ∼300 kg/mol and the D h was measured to be ∼20 nm. SDS-PAGE of the collected fraction across this peak revealed two bands with MM of 37 and 27 kg/mol which correspond to the α and β subunits of globulin indicating the elution of globulin aggregates. A third peak at long retention time was determined to be β-glucan through treatment of the oat extract with β-glucanase and by injection of β-glucan standards. The amount of soluble protein was measured to be 83.1 ± 2.3 wt.%, and the amount of albumin proteins was measured to be 17.6 ± 5.7 wt.% of the total protein in the oats. The results for Belinda oat extracts show that the AF4-MALS/UV platform is capable of characterizing the physicochemical properties such as MM and hydrodynamic size distribution of proteins and protein aggregates within a complicated food matrix environment and without the need to generate protein isolates.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Avena / chemistry*
  • Food Analysis / methods*
  • Fractionation, Field Flow / methods*
  • Mass Spectrometry / methods*
  • Plant Proteins / analysis*
  • Seeds / chemistry*

Substances

  • Plant Proteins