Nifedipine enhances cholesterol efflux in RAW264.7 macrophages

Cardiovasc Drugs Ther. 2013 Oct;27(5):425-31. doi: 10.1007/s10557-013-6472-y.

Abstract

Purpose: Studies have shown that nifedipine protects against atherosclerotic progression, but its underlying mechanisms remain unclear. In this study, we examined if nifedipine increases macrophage cholesterol efflux, a pathway known to inhibit atherogenesis.

Methods: We evaluated the ability of different doses of nifedipine to affect cholesterol efflux in RAW264.7 macrophages and its relationship with mRNA and protein levels of several well-characterized proteins involved in cholesterol efflux, including ABCA1, ABCG1, SR-BI and LXRα, using quantitative real-time PCR, Western blotting, and siRNA techniques.

Results: Nifedipne at 1, 10, and 100 nmol/L increased apoA-I-mediated cholesterol efflux from 2.55 % to 5.65 %, 6.20 %, and 6.10 %, as well as HDL-mediated cholesterol efflux from 31.0 % to 42.5 %, 46.0 %, and 43.5 %, respectively, in RAW264.7 macrophages (p < 0.05), which was associated with increased mRNA expression levels of ABCA1, ABCG1, SR-BI, and LXRα (405 %, 381 %, 336 %; 890 %, 960 %, 1002 %; 285 %, 325 %, 336 %; 482 %, 445 %, 405 %, respectively, p < 0.05), and with increased protein levels of ABCA1, ABCG1, SR-BI, and LXRα (428 %, 492 %, 361 %; 288 %, 331 %, 365 %; 283 %, 320 %, 505 %; 581 %, 678 %, 608 %, respectively, p < 0.05). SiRNA-mediated silencing of LXRα revealed that LXRα was involved in these increases and the enhanced cholesterol efflux.

Conclusion: Nifedipine may protect against atherosclerosis partly by promoting macrophage cholesterol efflux through the stimulation of LXRα-dependent expression of ABCA1, ABCG1, and SR-BI.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter 1 / genetics
  • ATP Binding Cassette Transporter 1 / metabolism
  • ATP Binding Cassette Transporter, Subfamily G, Member 1
  • ATP-Binding Cassette Transporters / genetics
  • ATP-Binding Cassette Transporters / metabolism
  • Animals
  • Calcium Channel Blockers / pharmacology*
  • Cell Line
  • Cholesterol / metabolism*
  • Lipoproteins / genetics
  • Lipoproteins / metabolism
  • Liver X Receptors
  • Macrophages / drug effects*
  • Macrophages / metabolism
  • Mice
  • Nifedipine / pharmacology*
  • Orphan Nuclear Receptors / genetics
  • Orphan Nuclear Receptors / metabolism
  • Scavenger Receptors, Class B / genetics
  • Scavenger Receptors, Class B / metabolism

Substances

  • ABCA1 protein, mouse
  • ABCG1 protein, mouse
  • ATP Binding Cassette Transporter 1
  • ATP Binding Cassette Transporter, Subfamily G, Member 1
  • ATP-Binding Cassette Transporters
  • Calcium Channel Blockers
  • Lipoproteins
  • Liver X Receptors
  • Nr1h3 protein, mouse
  • Orphan Nuclear Receptors
  • Scarb1 protein, mouse
  • Scavenger Receptors, Class B
  • Cholesterol
  • Nifedipine