Mammalian DNA demethylation: multiple faces and upstream regulation

Epigenetics. 2013 Jul;8(7):679-84. doi: 10.4161/epi.24977. Epub 2013 May 17.

Abstract

DNA cytosine methylation is a reversible epigenetic mark regulating gene expression. Aberrant methylation profiles are concomitant with developmental defects and cancer. Numerous studies in the past decade have identified enzymes and pathways responsible for active DNA demethylation both on a genome-wide as well as gene-specific scale. Recent findings have strengthened the idea that 5-methylcytosine oxidation catalyzed by members of the ten-eleven translocation (Tet1-3) oxygenases in conjunction with replication-coupled dilution of the conversion products causes the majority of genome-wide erasure of methylation marks during early development. In contrast, short and long patch DNA excision repair seems to be implicated mainly in gene-specific demethylation. Growth arrest and DNA damage-inducible protein 45 a (Gadd45a) regulates gene-specific demethylation within regulatory sequences of limited lengths raising the question of how such site specificity is achieved. A new study identified the protein inhibitor of growth 1 (Ing1) as a reader of the active chromatin mark histone H3 lysine 4 trimethylation (H3K4me3). Ing1 binds and directs Gadd45a to target sites, thus linking the histone code with DNA demethylation.

Keywords: 5-methylcytosine; DNA demethylation; Gadd45; H3K4me3; Ing1; reprogramming.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • DNA Methylation / genetics*
  • GADD45 Proteins
  • Gene Expression Regulation*
  • Histones / metabolism
  • Humans
  • Intracellular Signaling Peptides and Proteins / metabolism
  • Lysine / metabolism
  • Mammals / genetics*
  • Mice
  • Models, Biological
  • Nuclear Proteins / metabolism
  • Xenopus

Substances

  • Histones
  • Intracellular Signaling Peptides and Proteins
  • Nuclear Proteins
  • Lysine