Aromaticity effects on the profiles of the lowest triplet-state potential-energy surfaces for rotation about the C=C bonds of olefins with five-membered ring substituents: an example of the impact of Baird's rule

Chemistry. 2013 Aug 5;19(32):10698-707. doi: 10.1002/chem.201300008. Epub 2013 Jun 21.

Abstract

A density functional theory study on olefins with five-membered monocyclic 4n and 4n+2 π-electron substituents (C4H3X; X=CH(+), SiH(+), BH, AlH, CH2, SiH2, O, S, NH, and CH(-)) was performed to assess the connection between the degree of substituent (anti)aromaticity and the profile of the lowest triplet-state (T1) potential-energy surface (PES) for twisting about olefinic C=C bonds. It exploited both Hückel's rule on aromaticity in the closed-shell singlet ground state (S0) and Baird's rule on aromaticity in the lowest ππ* excited triplet state. The compounds CH2=CH(C4H3X) were categorized as set A and set B olefins depending on which carbon atom (C2 or C3) of the C4H3X ring is bonded to the olefin. The degree of substituent (anti)aromaticity goes from strongly S0 -antiaromatic/T1 -aromatic (C5H4 (+)) to strongly S0 -aromatic/T1- antiaromatic (C5H4(-)). Our hypothesis is that the shapes of the T1 PESs, as given by the energy differences between planar and perpendicularly twisted olefin structures in T1 [ΔE(T1)], smoothly follow the changes in substituent (anti)aromaticity. Indeed, correlations between ΔE(T1) and the (anti)aromaticity changes of the C4 H3 X groups, as measured by the zz-tensor component of the nucleus-independent chemical shift ΔNICS(T1;1)zz , are found both for sets A and B separately (linear fits; r(2) =0.949 and 0.851, respectively) and for the two sets combined (linear fit; r(2) =0.851). For sets A and B combined, strong correlations are also found between ΔE(T1) and the degree of S0 (anti)aromaticity as determined by NICS(S0,1)zz (sigmoidal fit; r(2) =0.963), as well as between the T1 energies of the planar olefins and NICS(S0,1)zz (linear fit; r(2) =0.939). Thus, careful tuning of substituent (anti)aromaticity allows for design of small olefins with T1 PESs suitable for adiabatic Z/E photoisomerization.

Keywords: alkenes; aromaticity; density functional calculations; electronic structure; photochemistry.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkenes / chemistry*
  • Carbon / chemistry*
  • Electrons
  • Hydrophobic and Hydrophilic Interactions
  • Isomerism
  • Quantum Theory
  • Rotation
  • Surface Properties
  • Thermodynamics

Substances

  • Alkenes
  • Carbon