Putative cobalt- and nickel-binding proteins and motifs in Streptococcus pneumoniae

Metallomics. 2013 Jun;5(7):928-35. doi: 10.1039/c3mt00126a.

Abstract

Cobalt and nickel play important roles in various biological processes. The present work focuses on the enrichment and identification of Co- and Ni-binding motifs and proteins in Gram-positive bacteria. Immobilized metal affinity column (IMAC) was used to partially enrich putative metal-binding proteins and peptides from Streptococcus pneumoniae, and then LTQ-Orbitrap mass spectrometry (MS) was applied to identify and characterize the metal-binding motifs and proteins. In total, 208 and 223 proteins were isolated by Co- and Ni-IMAC columns respectively, in which 129 proteins were present in both preparations. Based on the gene ontology (GO) analysis, the putative metal-binding proteins were found to be mainly involved in protein metabolism, gene expression regulation and carbohydrate metabolism. These putative metal-binding proteins form a highly connected network, indicating that they may synergistically work together to achieve specific biological functions. Putative Co- and Ni-binding motifs were identified with H(X)nH, M(X)nH and H(X)nM derived from the identified 51 Co-binding peptides and 66 Ni-binding peptides. Statistics of frequency of amino acids in the metal-binding motifs showed that cobalt and nickel prefer to bind histidine and methionine, but not cysteine. These results obtained by a systematic metalloproteomic approach provide important clues for the further investigation of metal homeostasis and metal-related virulence of bacteria.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / metabolism*
  • Cobalt / metabolism*
  • Mass Spectrometry
  • Molecular Sequence Data
  • Nickel / metabolism*
  • Protein Binding
  • Streptococcus pneumoniae / metabolism*

Substances

  • Bacterial Proteins
  • Cobalt
  • Nickel