Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly(ethylene glycol) (PEG) hydrogels

Biomaterials. 2013 Sep;34(28):6559-71. doi: 10.1016/j.biomaterials.2013.05.050. Epub 2013 Jun 14.

Abstract

Direct reprogramming strategies enable rapid conversion of somatic cells to cardiomyocytes or cardiomyocyte-like cells without going through the pluripotent state. A recently described protocol couples Yamanaka factor induction with pluripotency inhibition followed by BMP4 treatment to achieve rapid reprogramming of mouse fibroblasts to beating cardiomyocyte-like cells. The original study was performed using Matrigel-coated tissue culture polystyrene (TCPS), a stiff material that also non-specifically adsorbs serum proteins. Protein adsorption-resistant poly(ethylene glycol) (PEG) materials can be covalently modified to present precise concentrations of adhesion proteins or peptides without the unintended effects of non-specifically adsorbed proteins. Here, we describe an improved protocol that incorporates custom-engineered materials. We first reproduced the Efe et al. protocol on Matrigel-coated TCPS (the original material), reprogramming adult mouse tail-tip mouse fibroblasts (TTF) and mouse embryonic fibroblasts (MEF) to cardiomyocyte-like cells that demonstrated striated sarcomeric α-actinin staining, spontaneous calcium transients, and visible beating. We then designed poly(ethylene glycol) culture substrates to promote MEF adhesion via laminin and RGD-binding integrins. PEG hydrogels improved proliferation and reprogramming efficiency (evidenced by beating patch number and area, gene expression, and flow cytometry), yielding almost twice the number of sarcomeric α-actinin positive cardiomyocyte-like cells as the originally described substrate. These results illustrate that cellular reprogramming may be enhanced using custom-engineered materials.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Cellular Reprogramming / physiology
  • Fibroblasts / pathology*
  • Flow Cytometry
  • Hydrogels / chemistry*
  • Immunohistochemistry
  • Mice
  • Microscopy, Phase-Contrast
  • Myocytes, Cardiac / metabolism
  • Polyethylene Glycols / chemistry*
  • Stem Cell Niche / physiology

Substances

  • Hydrogels
  • Polyethylene Glycols