Tunable mesoporous lamellar silicas prepared using poly(ethylene oxide-b-L-lactide) and poly(ethylene-b-ethylene oxide-b-L-lactide) block copolymers as templates

J Nanosci Nanotechnol. 2013 Apr;13(4):2495-506. doi: 10.1166/jnn.2013.7350.

Abstract

In this study, we synthesized poly(ethylene oxide-b-L-lactide) (PEO-PLLA) diblock copolymers and poly(ethylene-b-ethylene oxide-b-L-lactide) (PE-PEO-PLLA) triblock terpolymers as templates for the preparation of mesoporous lamellar silicas, possessing single, bimodal, or trimodal pore size distributions, through an evaporation-induced self-assembly (EISA) approach. As templates, we synthesized the diblock copolymers EO114LLA26 and EO114LLA130 and the triblock terpolymers E13EO42LLA26 and E13EO42LLA35 using simple ring-opening polymerization. Small-angle X-ray scattering, transmission electron microscopy, and N2 sorption measurements revealed that the mesoporous silicas displayed the morphologies of either lamellar silica walls featuring a distribution of many short cylindrical mesopores or pure lamellar structures. The morphology was greatly affected by the nature of the template (diblock or triblock copolymer) and the molecular weight of the PLLA segment in the block copolymer.