Antibacterial activity of selected Malaysian honey

BMC Complement Altern Med. 2013 Jun 10:13:129. doi: 10.1186/1472-6882-13-129.

Abstract

Background: Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa.

Methods: Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were performed for semi-quantitative evaluation. Agar well diffusion assay was used to investigate peroxide and non-peroxide activities of honey.

Results: The results showed that gelam honey possessed lowest MIC value against S. aureus with 5% (w/v) MIC and MBC of 6.25% (w/v). Highest MIC values were shown by pineapple honey against E. coli and P. aeruginosa as well as acacia honey against E. coli with 25% (w/v) MIC and 50% (w/v) MBC values. Agar inhibition assay showed kelulut honey to possess highest total antibacterial activity against S. aureus with 26.49 equivalent phenol concentrations (EPC) and non-peroxide activity of 25.74 EPC. Lowest antibacterial activity was observed in acacia honey against E. coli with total activity of 7.85 EPC and non-peroxide activity of 7.59 EPC. There were no significant differences (p > 0.05) between the total antibacterial activities and non-peroxide activities of Malaysian honey. The intraspecific correlation between MIC and EPC of E. coli (r = -0.8559) was high while that between MIC and EPC of P. aeruginosa was observed to be moderate (r = -0.6469). S. aureus recorded a smaller correlation towards the opposite direction (r = 0.5045). In contrast, B.cereus showed a very low intraspecific correlation between MIC and EPC (r = -0.1482).

Conclusions: Malaysian honey, namely gelam, kelulut and tualang, have high antibacterial potency derived from total and non-peroxide activities, which implies that both peroxide and other constituents are mutually important as contributing factors to the antibacterial property of honey.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Bacterial Agents / analysis
  • Anti-Bacterial Agents / pharmacology*
  • Bacillus cereus / drug effects
  • Bacillus cereus / growth & development
  • Bees
  • Escherichia coli / drug effects
  • Escherichia coli / growth & development
  • Honey / analysis*
  • Malaysia
  • Microbial Sensitivity Tests
  • Pseudomonas aeruginosa / drug effects
  • Pseudomonas aeruginosa / growth & development
  • Staphylococcus aureus / drug effects
  • Staphylococcus aureus / growth & development

Substances

  • Anti-Bacterial Agents