Compact integrated X-ray intensity and beam position monitor based on rare gas scintillation

Rev Sci Instrum. 2013 May;84(5):053109. doi: 10.1063/1.4807698.

Abstract

We have created and tested a compact integrated X-ray beam intensity and position monitor using Ar-gas scintillation. The light generated inside the device's cavity is detected by diametrically opposed PIN diodes located above and below the beam. The intensity is derived from the sum of the top and bottom signals, while the beam position is calculated from the difference-over-sum of the two signals. The device was tested at Cornell High Energy Synchrotron Source with both 17 keV and 59 keV x-rays. For intensity monitoring, the Ar-scintillation monitor performance is comparable to standard ion chambers in terms of precision. As an X-ray beam position monitor the new device response is linear with vertical beam position over a 2 mm span with a precision of 2 μm.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Noble Gases*
  • Scintillation Counting / instrumentation*
  • X-Rays

Substances

  • Noble Gases