Dynamics simulation of the interaction between serine and water

J Chem Phys. 2013 May 28;138(20):205101. doi: 10.1063/1.4807004.

Abstract

Using the first principles density functional theory (DFT), we simulated the neutron scattering spectra of the hydration dynamics of serine. Experimental data analyses have shown that dissociative H2O molecules were more likely to form hydrogen bonds (H-bonds) with an -OH group in monohydrated serine and easily shift to a -NH3 (+) group at a higher hydration level [P. Zhang, Y. Zhang, S. H. Han, Q. W. Yan, R. C. Ford, and J. C. Li, J. Phys. Chem. A 110, 5000 (2006)]. We set the 1:1 ratio hydrated compounds at the two positions and found that the H2O could be optimized to form H-bonds with -OH and -NH3 (+) separately. When the simulated phonon signals of the -OH···H2O and -NH3(+)···H2O combinations were summed on a 3:1 scale, the calculating spectra were in good agreement with the experimental results, especially for the peak at 423 cm(-1) of the -OH···H2O combination and the peak at 367 cm(-1) of the -NH3(+)···H2O combination, which mutually complemented the real spectrum. We confirm that H2O may break the intermolecular H-bonds of the interlaced binding -OH to form a new structure, and that with the skeleton deformation of serine, H2O forms stronger H-bonds more often with the -NH3 (+) side indicating the flexible dynamic mechanism of the serine hydration process.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Molecular Dynamics Simulation*
  • Serine / chemistry*
  • Water / chemistry*

Substances

  • Water
  • Serine