Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs

Expert Opin Drug Discov. 2013 Sep;8(9):1117-26. doi: 10.1517/17460441.2013.807245. Epub 2013 Jun 6.

Abstract

Introduction: Targeting pathogenetic mechanisms, rather than essential processes, represents a very attractive alternative for the development of new antibiotics. This may be particularly important in the case of antimycotics, due to the urgent need for novel antifungal drugs and the paucity of selective fungal targets. The opportunistic pathogenic fungus Candida albicans is the main etiological agent of candidiasis, the most common human fungal infection. These infections carry unacceptably high mortality rates, a clear reflection of the many shortcomings of current antifungal therapy, including the limited armamentarium of antifungal agents, their toxicity and the emergence of resistance. Moreover, the antifungal pipeline is mostly dry.

Areas covered: This review covers some of the most recent progress toward understanding C. albicans pathogenetic processes and how to harness this information for the development of anti-virulence agents. The two principal areas covered are filamentation and biofilm formation, as C. albicans pathogenicity is intimately linked to its ability to undergo morphogenetic conversions between yeast and filamentous morphologies and to its ability to form biofilms.

Expert opinion: Filamentation and biofilm formation represent high value targets, yet are clinically unexploited, for the development of novel anti-virulence approaches against candidiasis. Although this has proved a difficult task despite increasing understanding at the molecular level of C. albicans virulence, there are some opportunities and prospects for antifungal drug development targeting these two important biological processes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Antifungal Agents* / therapeutic use
  • Biofilms
  • Candida albicans / pathogenicity*
  • Candida albicans / physiology
  • Candidiasis / drug therapy
  • Drug Discovery*
  • Drug Resistance, Fungal
  • Humans
  • Virulence

Substances

  • Antifungal Agents