Co-occurrence patterns of Bornean vertebrates suggest competitive exclusion is strongest among distantly related species

Oecologia. 2013 Nov;173(3):1053-62. doi: 10.1007/s00442-013-2679-7. Epub 2013 Jun 5.

Abstract

Assessing the importance of deterministic processes in structuring ecological communities is a central focus of community ecology. Typically, community ecologists study a single taxonomic group, which precludes detection of potentially important biotic interactions between distantly related species, and inherently assumes competition is strongest between closely related species. We examined distribution patterns of vertebrate species across the island of Borneo in Southeast Asia to assess the extent to which inter-specific competition may have shaped ecological communities on the island and whether the intensity of inter-specific competition in present-day communities varies as a function of evolutionary relatedness. We investigated the relative extent of competition within and between species of primates, birds, bats and squirrels using species presence-absence and attribute data compiled for 21 forested sites across Borneo. We calculated for each species pair the checkerboard unit value (CU), a statistic that is often interpreted as indicating the importance of interspecific competition. The percentage of species pairs with significant CUs was lowest in within-taxon comparisons. Moreover, for invertebrate-eating species the percentage of significantly checkerboarded species pairs was highest in comparisons between primates and other taxa, particularly birds and squirrels. Our results are consistent with the interpretation that competitive interactions between distantly related species may have shaped the distribution of species and thus the composition of Bornean vertebrate communities. This research highlights the importance of taking into account the broad mammalian and avian communities in which species occur for understanding the factors that structure biodiversity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animal Distribution / physiology*
  • Animals
  • Biological Evolution*
  • Borneo
  • Competitive Behavior / physiology*
  • Ecosystem*
  • Species Specificity
  • Vertebrates / physiology*