Eccentric contractions increase the phosphorylation of tuberous sclerosis complex-2 (TSC2) and alter the targeting of TSC2 and the mechanistic target of rapamycin to the lysosome

J Physiol. 2013 Sep 15;591(18):4611-20. doi: 10.1113/jphysiol.2013.256339. Epub 2013 Jun 3.

Abstract

The goal of this study was to determine whether the mechanical activation of mechanistic target of rapamycin (mTOR) signalling is associated with changes in phosphorylation of tuberous sclerosis complex-2 (TSC2) and targeting of mTOR and TSC2 to the lysosome. As a source of mechanical stimulation, mouse skeletal muscles were subjected to eccentric contractions (ECs). The results demonstrated that ECs induced hyper-phosphorylation of TSC2 and at least part of this increase occurred on residue(s) that fall within RxRxxS/T consensus motif(s). Furthermore, in control muscles, we found that both mTOR and TSC2 are highly enriched at the lysosome. Intriguingly, ECs enhanced the lysosomal association of mTOR and almost completely abolished the lysosomal association of TSC2. Based on these results, we developed a new model that could potentially explain how mechanical stimuli activate mTOR signalling. Furthermore, this is the first study to reveal that the activation of mTOR is associated with the translocation of TSC2 away from the lysosome. Since a large number of signalling pathways rely on TSC2 to control mTOR signalling, our results have potentially revealed a fundamental mechanism via which not only mechanical, but also various other types of stimuli, control mTOR signalling.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Amino Acid Motifs
  • Animals
  • Cell Line
  • Lysosomes / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Muscle Contraction*
  • Muscle, Skeletal / metabolism*
  • Muscle, Skeletal / physiology
  • Phosphorylation
  • Protein Transport
  • Signal Transduction
  • TOR Serine-Threonine Kinases / metabolism*
  • Tuberous Sclerosis Complex 2 Protein
  • Tumor Suppressor Proteins / chemistry
  • Tumor Suppressor Proteins / metabolism*

Substances

  • Tsc2 protein, mouse
  • Tuberous Sclerosis Complex 2 Protein
  • Tumor Suppressor Proteins
  • mTOR protein, mouse
  • TOR Serine-Threonine Kinases