Silver-containing mesoporous bioactive glass with improved antibacterial properties

J Mater Sci Mater Med. 2013 Sep;24(9):2129-35. doi: 10.1007/s10856-013-4968-4. Epub 2013 May 28.

Abstract

The aim of the present work is the study of the bacteriostatic/bactericidal effect of a silver-containing mesoporous bioactive glass obtained by evaporation-induced self-assembly and successive thermal stabilization. Samples of the manufactured mesophase were characterized by means of transmission electron microscopy and N₂ adsorption/desorption at 77 K, revealing structural and textural properties similar to SBA-15 mesoporous silica. Glass samples used for bioactivity experiments were put in contact with a standardized, commercially available cell culture medium instead of lab-produced simulated body fluid, and were then characterized by means of X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy. All these analyses confirmed the development of a hydroxyl carbonate apatite layer on glass particles. Moreover, the investigated mesostructure showed a very good antibacterial effect against S. aureus strain, with a strong evidence of bactericidal activity already registered at 0.5 mg/mL of glass concentration. A hypothesis about the mechanism by which Ag affects the bacterial viability, based on the intermediate formation of crystalline AgCl, was also taken into account. With respect to what already reported in the literature, these findings claim a deeper insight into the possible use of silver-containing bioactive glasses as multifunctional ceramic coatings for orthopedic devices.

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Biocompatible Materials*
  • Glass*
  • Microscopy, Electron, Scanning
  • Microscopy, Electron, Transmission
  • Silver / chemistry*
  • Spectroscopy, Fourier Transform Infrared
  • Staphylococcus aureus / drug effects
  • X-Ray Diffraction

Substances

  • Anti-Bacterial Agents
  • Biocompatible Materials
  • Silver