Real-time implementation of a dual-mode ultrasound array system: in vivo results

IEEE Trans Biomed Eng. 2013 Oct;60(10):2751-9. doi: 10.1109/TBME.2013.2264484. Epub 2013 May 21.

Abstract

A real-time dual-mode ultrasound array (DMUA) system for imaging and therapy is described. The system utilizes a concave (40-mm radius of curvature) 3.5 MHz, 32 element array, and modular multichannel transmitter/receiver. The system is capable of operating in a variety of imaging and therapy modes (on transmit) and continuous receive on all array elements even during high-power operation. A signal chain consisting of field-programmable gate arrays and graphical processing units is used to enable real time, software-defined beamforming and image formation. Imaging data, from quality assurance phantoms as well as in vivo small- and large-animal models, are presented and discussed. Corresponding images obtained using a temporally-synchronized and spatially-aligned diagnostic probe confirm the DMUA's ability to form anatomically-correct images with sufficient contrast in an extended field of view around its geometric center. In addition, high-frame rate DMUA data also demonstrate the feasibility of detection and localization of echo changes indicative of cavitation and/or tissue boiling during high-intensity focused ultrasound exposures with 45-50 dB dynamic range. The results also show that the axial and lateral resolution of the DMUA are consistent with its f(number) and bandwidth with well-behaved speckle cell characteristics. These results point the way to a theranostic DMUA system capable of quantitative imaging of tissue property changes with high specificity to lesion formation using focused ultrasound.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Computer Systems
  • Equipment Design
  • Equipment Failure Analysis
  • Feasibility Studies
  • Image Enhancement / instrumentation*
  • Rats
  • Swine
  • Transducers*
  • Ultrasonic Therapy / instrumentation*
  • Ultrasonography / instrumentation*