Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation

J Am Chem Soc. 2013 Jun 19;135(24):9099-110. doi: 10.1021/ja4035335. Epub 2013 Jun 6.

Abstract

Growing oxide shells on seed nanoparticles requires the control of several processes: (a) the nucleation and growth of the shell material; (b) the "wetting" of the shell material on the seeds; and (c) the aggregation of the nanoparticles. These processes are influenced by a number of factors, many of which are related. Without understanding the interdependence of these contributing factors, it is difficult to circumvent problems and achieve rational synthesis. We first did a case study on encapsulating Au nanoparticles with ZnO to understand the multiple roles of polyvinylpyrrolidone (PVP) and their dependence on other factors. We developed a general method for coating ZnO on a variety of seeds, including metals, oxides, polymer nanoparticles, graphene oxide, and carbon nanotube. This method can be further extended to include Fe3O4, MnO, Co2O3, TiO2, Eu2O3, Tb2O3, Gd2O3, β-Ni(OH)2, ZnS, and CdS as the shell materials. The understanding obtained in this systematic study will aid rational design and synthesis of other core-shell nanostructures.