Two traditional maize inbred lines of contrasting technological abilities are discriminated by the seed flour proteome

J Proteome Res. 2013 Jul 5;12(7):3152-65. doi: 10.1021/pr400012t. Epub 2013 Jun 13.

Abstract

The seed proteome of two traditional maize inbred lines (pb269 and pb369) contrasting in grain hardness and in preferable use for bread-making was evaluated. The pb269 seeds, of flint type (i.e., hard endosperm), are preferably used by manufacturers, while pb369 (dent, soft endosperm) is rejected. The hypothesis that the content and relative amounts of specific proteins in the maize flour are relevant for such discrimination of the inbred lines was tested. The flour proteins were sequentially extracted following the Osborne fractionation (selective solubilization), and the four Osborne fractions were submitted to two-dimensional electrophoresis (2DE). The total amount of protein extracted from the seeds was not significantly different, but pb369 flour exhibited significantly higher proportions of salt-extracted proteins (globulins) and ethanol-extracted proteins (alcohol-soluble prolamins). The proteome analysis allowed discrimination between the two inbred lines, with pb269 demonstrating higher heterogeneity than pb369. From the 967 spots (358 common to both lines, 208 specific to pb269, and 401 specific to pb369), 588 were submitted to mass spectrometry (MS). Through the combined use of trypsin and chymotrypsin it was possible to identify proteins in 436 spots. The functional categorization in combination with multivariate analysis highlighted the most discriminant biological processes (carbohydrate metabolic process, response to stress, chitin catabolic process, oxidation-reduction process) and molecular function (nutrient reservoir activity). The inbred lines exhibited quantitative and qualitative differences in these categories. Differences were also revealed in the amounts, proportions, and distribution of several groups of storage proteins, which can have an impact on the organization of the protein body and endosperm hardness. For some proteins (granule-bound starch synthase-1, cyclophilin, zeamatin), a change in the protein solubility rather than in the total amount extracted was observed, which reveals distinct in vivo associations and/or changes in binding strength between the inbred lines. Our approach produced information that relates protein content, relative protein content, and specific protein types to endosperm hardness and to the preferable use for "broa" bread-making.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrophoresis, Gel, Two-Dimensional
  • Endosperm / metabolism
  • Flour / analysis
  • Mass Spectrometry
  • Plant Proteins / isolation & purification*
  • Plant Proteins / metabolism
  • Proteome / analysis*
  • Seeds / metabolism*
  • Zea mays / metabolism*

Substances

  • Plant Proteins
  • Proteome