Design of a single-cell positioning controller using electroosmotic flow and image processing

Sensors (Basel). 2013 May 21;13(5):6793-810. doi: 10.3390/s130506793.

Abstract

The objective of the current research was not only to provide a fast and automatic positioning platform for single cells, but also improved biomolecular manipulation techniques. In this study, an automatic platform for cell positioning using electroosmotic flow and image processing technology was designed. The platform was developed using a PCI image acquisition interface card for capturing images from a microscope and then transferring them to a computer using human-machine interface software. This software was designed by the Laboratory Virtual Instrument Engineering Workbench, a graphical language for finding cell positions and viewing the driving trace, and the fuzzy logic method for controlling the voltage or time of an electric field. After experiments on real human leukemic cells (U-937), the success of the cell positioning rate achieved by controlling the voltage factor reaches 100% within 5 s. A greater precision is obtained when controlling the time factor, whereby the success rate reaches 100% within 28 s. Advantages in both high speed and high precision are attained if these two voltage and time control methods are combined. The control speed with the combined method is about 5.18 times greater than that achieved by the time method, and the control precision with the combined method is more than five times greater than that achieved by the voltage method.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electricity
  • Electroosmosis / instrumentation*
  • Equipment Design
  • Fuzzy Logic
  • Humans
  • Image Processing, Computer-Assisted*
  • Single-Cell Analysis / instrumentation*
  • Software
  • Software Design
  • Time Factors
  • U937 Cells