Direct measurement of active thiol metabolite levels of clopidogrel in human plasma using tris(2-carboxyethyl)phosphine as a reducing agent by LC-MS/MS

J Sep Sci. 2013 Jul;36(14):2306-14. doi: 10.1002/jssc.201300332. Epub 2013 Jun 21.

Abstract

A simple, robust, and rapid LC-MS/MS method has been developed and validated for the simultaneous quantitation of clopidogrel and its active metabolite (AM) in human plasma. Tris(2-carboxyethyl)phosphine (TCEP) was used as a reducing agent to detect the AM as a disulfide-bonded complex with plasma proteins. Mixtures of TCEP and human plasma were deproteinized with acetonitrile containing 10 ng/mL of clopidogrel-d4 as an internal standard (IS). The mixtures were separated on a C18 RP column with an isocratic mobile phase consisting of 0.1% formic acid in acetonitrile and water (90:10, v/v) at a flow rate of 0.3 mL/min. Detection and quantification were performed using ESI-MS. The detector was operated in selected reaction-monitoring mode at m/z 322.0→211.9 for clopidogrel, m/z 356.1→155.2 for the AM, and m/z 326.0→216.0 for the IS. The linear dynamic range for clopidogrel and its AM were 0.05-20 and 0.5-200 ng/mL, respectively, with correlation coefficients (r) greater than 0.9976. Precision, both intra- and interday, was less than 8.26% with an accuracy of 87.6-106%. The validated method was successfully applied to simultaneously analyze clinical samples for clopidogrel and its AM.

Keywords: Clopidogrel; Clopidogrel active metabolite; Human plasma; LC-MS/MS; Reducing agent; tris(2-Carboxyethyl)phosphine.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromatography, Liquid / methods*
  • Clopidogrel
  • Humans
  • Oxidation-Reduction
  • Phosphines / chemistry
  • Sulfhydryl Compounds / blood*
  • Sulfhydryl Compounds / metabolism
  • Tandem Mass Spectrometry / methods*
  • Ticlopidine / analogs & derivatives*
  • Ticlopidine / blood
  • Ticlopidine / metabolism

Substances

  • Phosphines
  • Sulfhydryl Compounds
  • tris(2-carboxyethyl)phosphine
  • Clopidogrel
  • Ticlopidine