Neuroimaging predictors of brain amyloidosis in mild cognitive impairment

Ann Neurol. 2013 Aug;74(2):188-98. doi: 10.1002/ana.23921. Epub 2013 Sep 10.

Abstract

Objective: To identify a neuroimaging signature predictive of brain amyloidosis as a screening tool to identify individuals with mild cognitive impairment (MCI) that are most likely to have high levels of brain amyloidosis or to be amyloid-free.

Methods: The prediction model cohort included 62 MCI subjects screened with structural magnetic resonance imaging (MRI) and (11) C-labeled Pittsburgh compound B positron emission tomography (PET). We identified an anatomical shape variation-based neuroimaging predictor of brain amyloidosis and defined a structural MRI-based brain amyloidosis score (sMRI-BAS). Amyloid beta positivity (Aβ(+) ) predictive power of sMRI-BAS was validated on an independent cohort of 153 MCI patients with cerebrospinal fluid Aβ1-42 biomarker data but no amyloid PET scans. We compared the Aβ(+) predictive power of sMRI-BAS to those of apolipoprotein E (ApoE) genotype and hippocampal volume, the 2 most relevant candidate biomarkers for the prediction of brain amyloidosis.

Results: Anatomical shape variations predictive of brain amyloidosis in MCI embraced a characteristic spatial pattern known for high vulnerability to Alzheimer disease pathology, including the medial temporal lobe, temporal-parietal association cortices, posterior cingulate, precuneus, hippocampus, amygdala, caudate, and fornix/stria terminals. Aβ(+) prediction performance of sMRI-BAS and ApoE genotype jointly was significantly better than the performance of each predictor separately (area under the curve [AUC] = 0.88 vs AUC = 0.70 and AUC = 0.81, respectively) with >90% sensitivity and specificity at 20% false-positive rate and false-negative rate thresholds. Performance of hippocampal volume as an independent predictor of brain amyloidosis in MCI was only marginally better than random chance (AUC = 0.56).

Interpretation: As one of the first attempts to use an imaging technique that does not require amyloid-specific radioligands for identification of individuals with brain amyloidosis, our findings could lead to development of multidisciplinary/multimodality brain amyloidosis biomarkers that are reliable, minimally invasive, and widely available.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Validation Study

MeSH terms

  • Aged
  • Aged, 80 and over
  • Amyloid beta-Peptides / cerebrospinal fluid
  • Amyloidosis / cerebrospinal fluid
  • Amyloidosis / diagnosis*
  • Amyloidosis / pathology
  • Apolipoproteins E / genetics
  • Biomarkers
  • Brain Chemistry / physiology*
  • Cognitive Dysfunction / cerebrospinal fluid
  • Cognitive Dysfunction / diagnosis*
  • Cognitive Dysfunction / pathology
  • Female
  • Humans
  • Male
  • Neuroimaging / methods*
  • Peptide Fragments / cerebrospinal fluid
  • Predictive Value of Tests
  • Reproducibility of Results

Substances

  • Amyloid beta-Peptides
  • Apolipoproteins E
  • Biomarkers
  • Peptide Fragments
  • amyloid beta-protein (1-42)