Ice particle crystallization in the presence of ethanol: an in situ study by Raman and X-ray diffraction

J Phys Chem A. 2013 Jun 13;117(23):4916-27. doi: 10.1021/jp4015614. Epub 2013 Jun 4.

Abstract

Two distinct ethanol aqueous solution droplets ((X(EtOH))L = 8.7 wt % and 46.5 wt %) are investigated by in situ Raman spectroscopy and X-ray diffraction between 253 and 88 K. Structural changes are identified by modifications in the O-H and C-H stretching modes (2800-3800 cm(-1) spectral region) during freezing and annealing events. They are attributed to the formation of ice and/or different hydrate structures in the EtOH-water system. At high initial ethanol concentration, the particle is found to be composed of a modified clathrate I (cubic structure) at 211 K on cooling and transformed into an ethanol hydrate II (monoclinic structure) on annealing between ∼143 and 173 K. This latter decomposes at ∼200 K and leaves an aqueous solution and ice Ih which further dissociates above ∼230 K. At low initial concentration, ice first forms on cooling and the particle consists of a crystalline ice core embedded in a liquid layer of high ethanol content at ~200 K (or an amorphous layer at lower T). A new hydrate (IV) of distinct structure (orthorhombic) is observed on annealing (from 100 K) between ∼123 K and ∼142 K (depending on initial composition), which transforms into the ethanol hydrate II at ∼160 K. The hydrate II decomposes at ∼200 K, and ice Ih remains (and dissociate above ∼220 K) in coexistence with the liquid layer of high ethanol content. It is proposed that the complex crystalline ice particles formed may have the potential to impact several atmospherical processes differently in comparison to the pure ice case.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crystallization
  • Ethanol / chemistry*
  • Ice*
  • Particle Size
  • Spectrum Analysis, Raman
  • X-Ray Diffraction

Substances

  • Ice
  • Ethanol